Connecting the World: A Brief Intro to Concepts of Web & Database Integration

R. Scott Granneman Senior Consultant, Internet Services Bryan Consulting

© 2002-2003 Scott Granneman Last updated 20030209 You are free to use this work, with certain restrictions. For full licensing information, please see the last slide/page.

scott.granneman@bryanconsulting.com

Our Topics

- What's a database?
- SQL
- Various databases
- Middleware
- Resources

What's a Database?

- "A collection of data arranged for ease and speed of search and retrieval." (American Heritage Dictionary of the English Language, 4th Edition)
- "One or more large structured sets of persistent data, usually associated with software to update and query the data. A simple database might be a single file containing many records, each of which contains the same set of fields where each field is a certain fixed width." (The Free On-line Dictionary of Computing)

A Simple Database

Student ID	Student Name	ZIP	Email
1001	Steve Smith	63112	steve@smith.com
1002	Becky Barnes	63130	becky@barnes.com
1003	Pat	63108	pat@justpat.com

- This is a database table
- Columns identify each specific item of data
- Each row is a "record"
- You've probably done this with Excel, even though that's really not what a spreadsheet is for

What If We Want to Add Data?

Student ID	Student Name	ZIP	Email	OS
1001	Steve Smith	63112	steve@smith.com	Mac OS X
1002	Becky Barnes	63130	becky@barnes.com	Red Hat Linux 8.0
1003	Pat	63108	pat@justpat.com	Mandrake Linux 9.0

- Just add a column for operating systems, called "OS"
- So far, so good ... although our table is now including data (OS) that doesn't really relate to the other data (contact info)

A Problem Develops

Student ID	Student Name	ZIP	Email	OS	OS 2
1001	Steve Smith	63112	steve@smith.com	Mac OS X	Windows 2000
1002	Becky Barnes	63130	becky@barnes.com	Red Hat Linux 8.0	
1003	Pat	63108	pat@justpat.com	Mandrake Linux 9.0	

- Steve informs us that he uses two operating systems
- Now we need to add another column, "OS 2"
- Problems
 - We're adding columns that don't contain a lot of data
 - o This table is not focused on one type of data

A Better Way: Relational Databases

Student ID	Student Name	ZIP	Email
1001	Steve Smith	63112	steve@smith.com
1002	Becky Barnes	63130	becky@barnes.com
1003	Pat	63108	pat@justpat.com

Student ID	OS
1001	Mac OS X
1001	Windows 2000
1002	Red Hat Linux 8.0
1003	Mandrake Linux 9.0

- Two tables, related to each other through a shared unique data point: "Student ID"
- Each table focuses on one particular grouping of data

SQL

- "Structured Query Language"
- "An industry-standard language for creating, updating and, querying relational database management systems." (The Free On-line Dictionary of Computing)
- A common language most modern databases use to work with data

SQL Is Actually Pretty Easy

Here's a table named "Students"

Student ID	Student Name	ZIP	Email
1001	Steve Smith	63112	steve@smith.com
1002	Becky Barnes	63130	becky@barnes.com
1003	Pat	63108	pat@justpat.com

- Given the SQL statement:
 SELECT Email FROM Students
- Produces:

steve@smith.com becky@barnes.com pat@justpat.com

More SQL

Here's a table named "Students"

Student ID	Student Name	ZIP	Email
1001	Steve Smith	63112	steve@smith.com
1002	Becky Barnes	63130	becky@barnes.com
1003	Pat	63108	pat@justpat.com

Given the SQL statement:
 SELECT Email,Student ID FROM Students

• Produces:

steve@smith.com1001becky@barnes.com1002pat@justpat.com1003

Yet More SQL

Here's a table named "Students"

Student ID	Student Name	ZIP	Email
1001	Steve Smith	63112	steve@smith.com
1002	Becky Barnes	63130	becky@barnes.com
1003	Pat	63108	pat@justpat.com

- Given the SQL statement: INSERT INTO Students VALUES ('1004', 'Bob Jones', '63132', 'bob@bob.com')
- Produces:

Student ID	Student Name	ZIP	Email
1001	Steve Smith	63112	steve@smith.com
1002	Becky Barnes	63130	becky@barnes.com
1003	Pat	63108	pat@justpat.com
1004	Bob Jones	63132	bob@bob.com

scott.granneman@bryanconsulting.com

No More SQL, I Promise

Here's a table named "Students"

Student ID	Student Name	ZIP	Email
1001	Steve Smith	63112	steve@smith.com
1002	Becky Barnes	63130	becky@barnes.com
1003	Pat	63108	pat@justpat.com

- Given the SQL statement: UPDATE Students SET Email = 'pat@pat.com' WHERE Student Name = 'Pat'
- Produces:

Student ID	Student Name	ZIP	Email
1001	Steve Smith	63112	steve@smith.com
1002	Becky Barnes	63130	becky@barnes.com
1003	Pat	63108	pat@pat.com

scott.granneman@bryanconsulting.com

ACID

- Set of standards for rating database architecture
 - o Atomicity
 - Consistency
 - o Isolation
 - o Durability
- The more ACID-compliant, the safer the data in the database

Database Capacities

- High End
 - Handle hundreds of tables, millions of records, and constant input & output
 - o ACID-compliant
 - Examples: Oracle, IBM's DB2, Microsoft SQL Server, & Informix
- Mid-Tier
 - Not as robust as high end, but some co's use them for ecommerce
 - Examples: Firebird, MySQL, & PostgreSQL
- Personal or Departmental
 - Meant for one person or a small department
 - Connect to Web? Small intranet OK; anything else questionable
 - Examples: Microsoft Access & FileMaker Pro

Open Source Databases

- There are two popular open source databases

 MySQL ~ www.mysql.org
 PostgreSQL ~ www.postgresql.org
- Because they are open source ...
 - All code is available
 - o They are constantly updated & improvedo Available for download at no cost
- They're great to learn with, and they're being used in large production Web sites today: Slashdot, Yahoo, Internet Movie Database

Middleware

- "Software that mediates between an application program and a network. It manages the interaction between disparate applications across the heterogeneous computing platforms." (The Free On-line Dictionary of Computing)
- "... a general term for any programming that serves to 'glue together' or mediate between two separate and often already existing programs." (searchwebservices.techtarget.com)

Something That Will Not Work

- Web servers cannot just "talk" to databases
- Web servers are pretty stupid: they just take requests for Web pages and images and respond

Middleware Saves the Day

- Middleware mediates between Web server & database
 - 1. Web server passes your request for data to middleware
 - 2. Middleware crafts request in terms database can understand & queries database

Bryan Consulting

- 3. Database responds & sends data back to middleware
- 4. Middleware formats data with HTML & sends result to Web server
- 5. Web server sends resulting Web page to you

scott.granneman@bryanconsulting.com

Middleware Examples

- Closed Source

 Microsoft's ASP (Active Server Pages) technology
 Macromedia's Cold Fusion
- Closed & Open: UserLand's Frontier/Manila
- Open Source
 - PHP (PHP Hypertext Preprocessing)
 - o JSP (Java Server Pages)
 - o Perl
 - o Python
 - Zope (built with Python)

Monolithic Middleware

- Some systems are *monolithic --* they encompass more than one function:
 - O Userland Frontier/Manila is actually a Web server, Middleware, & a database
 - Zope is middleware, but it also contains a Web server
- In each case, you can pick & choose as you desire

 For example, use Frontier for Middleware, but Apache for a Web server & mySQL for a database

Books

- *MySQL* by Paul DuBois
- PHP and MySQL Web Development by Luke Welling & Laura Thomson
- The Web Wizard's Guide to PHP by David Lash (see <u>www.linuxjournal.com/article.php?sid=6507</u>)
- Build Your Own Database Driven Website
 Using PHP & MySQL by Kevin Yank

Web Sites

- Developer Shed ~ <u>www.devshed.com</u>
- PHP/MySQL Tutorial ~ <u>hotwired.lycos.com/webmonkey/programming/php/</u> <u>tutorials/tutorial4.html</u>
- PHP/MySQL Tutorial ~ <u>www.freewebmasterhelp.com/tutorials/phpmysql/</u>
- Better yet, search Google for "PHP MySQL tutorial"

Thank You!

- Final thought: If you want to be successful, make money, & live a happy life developing Web-based applications, learn databases & middleware.
- Email me: scott@granneman.com
- Visit my Web site: www.granneman.com
- Read my blog: radio.weblogs.com/0100530
- Join GranneNotes, my newsletter for people interested in technology & the Internet, by visiting www.granneman.com

Licensing of this work

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0 or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

In addition to the rights and restrictions common to all Creative Commons licenses, the Attribution-ShareAlike License features the following key conditions:

Attribution. The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original author credit.

Share Alike. The licensor permits others to distribute derivative works under a license identical to the one that governs the licensor's work.

Questions? Email scott@granneman.com