
© 2012 R. Scott Granneman
Last updated 20120906

You are free to use this work, with certain restrictions.
For full licensing information, please see the last slide/page.

R. Scott Granneman
scott@granneman.com
www.granneman.com

4 Managing Files
LPIC-1 Study Group

This presentation
is based on

Roderick W. Smith’s
LPIC-1: Linux Professional Institute

Certification Study Guide,
2nd edition
That said,

there are many
additions, subtractions, & changes

Introduction

1

2

3
Thursday, September 13, 12

Managing
Files

Everything is a file
Everything

Gotta know how to
create,
delete,
move,

rename,
archive,

& manipulate files

File Naming
&

Wildcard Expansion
Rules

4

5

6
Thursday, September 13, 12

Safest to stick to
letters,

numbers,
& these symbols:

."#"_"~

Avoid spaces

Never use
*"?"/"\""

255 character filenames

dot files are hidden
.

current directory
..

parent directory
~

home directory

Case sensitivity

Foo.txt
is not
foo.txt
is not

FOO.txt

7

8

9
Thursday, September 13, 12

Wildcards
stand for other characters

?
*
[]

File globbing
Wildcard expansion in commands

?

Single character

f??k

matches
flak, folk, fork, funk

*

Any character or characters,
including none

f*k

matches
folk, flack, flank, firetruck

10

11

12
Thursday, September 13, 12

[]

Set of characters

fl[ao]ck

matches
flack & flock

f[a#z]ck

matches
fack, feck, fock, & that’s it !

$"ls"f??k

is the same as
$"ls"flak"folk"fork"funk

File Commands

13

14

15
Thursday, September 13, 12

ls

cp

mv

rm

touch

ls"options'files
List files

ls

List files
in current directory

ls"#a

ls"##all

Display all files,
including dot files

ls"##color

Colorize listing

16

17

18
Thursday, September 13, 12

ls"#d

ls"##directory

List only directory names

ls"#l

Long listing,
including

permissions, owner, group,
size, & creation date

ls"#F

ls"##file#type

Indicator code after file names

/ Directory
@ Symbolic (soft) link

= Socket
| Pipe

ls"#R

ls"##recursive

Display directory contents
recursively

19

20

21
Thursday, September 13, 12

cp"options'source'destination
Copy files

cp"foo"bar

Change foo to bar

cp"foo"bar/

Keep foo as the name

cp"foo"bar/foobar

Change foo to foobar

cp"../bar".

Copy bar to current directory

cp"#f

cp"##force

Overwrite existing files
without prompting

cp"#i

cp"##interactive

Ask before overwriting

22

23

24
Thursday, September 13, 12

cp"#p

cp"##preserve

Preserve ownership & permissions

cp"#R"(or"#r)

cp"##recursive

Copy directory & all contents

cp"#a

cp"##archive

Recursive AND preserve
ownership & links

cp"#u

cp"##update

Copy only newer or non-existent files

mv"options'source'destination
Move files

Acts to rename files too

25

26

27
Thursday, September 13, 12

Same options as cp,
except for

##preserve, ##recursive, & ##archive

rm"options'files
Remove (delete) files

No trash can, no restore

Same options as cp,
except for

##preserve, ##update, & ##archive

28

29

30
Thursday, September 13, 12

rm"#rf

Only way to delete directories
with files in them
Very dangerous!

touch"options'files
Modify time stamps

3 time stamps for every file

Creation time
Last modification time

Last access time

31

32

33
Thursday, September 13, 12

touch"foo

Set modification & access times
to current

If foo doesn’t exist, create it

touch"#a

touch"##time=atime

Change access time

touch"#m

touch"##time=mtime

Change modification time

touch"#t"MMDDhhmm[[CC]YY][.ss]

MM month
DD day

hh hour (24-hour clock)
mm minute
YY year (12)

CCYY year (2012)
ss second

34

35

36
Thursday, September 13, 12

touch"#r"reffile

touch"##reference=reffile

Replication reffiles’s time stamp

File Archiving

Archiving
collects files

into a single file

Archiving ≠ compression

37

38

39
Thursday, September 13, 12

tar

cpio

dd

tar

“tape archiver”
Don’t need tape!

Archive files into a tarball

tar"cvf"foo.tar"foo/
tar"##create"##verbose"##file

tar"zcvf"foo.tar.gz"foo/
tar"##gzip"##create"##verbose"##file

40

41

42
Thursday, September 13, 12

tar"W

tar"##verify

Verify archive after writing it

tarxvffoo.tar
tar$**extract$**verbose$**file

tar$zxvf$foo.tar.gz
tar$**gunzip$**extract$**verbose$**file

tar"t

tar"##list

List archive’s contents

43

44

45
Thursday, September 13, 12

tar"A

tar"##concatenate

Append tar files to an archive

tar"r

tar"##append

Appends non-tar files to an archive

tar"u

tar"##update

Append files that are newer
than those in an archive

tar"d
tar"##diff

tar"##compare

Compare archive to files on disk

tar"p

tar"##same#permissions

Preserves permissions

tar"##exclude

Exclude file from archive

tar"X"file

tar"##exclude#from"file
Exclude files

listed in file from archive

46

47

48
Thursday, September 13, 12

cpio

“Copy In, Copy Out”

Originally for backup to tape

3 modes
Copy-out

cpio"#o or ##create
Create archive & copy files into it

Copy-in
cpio"#i or ##extract

Extract data from existing archive
Copy-pass

cpio"#p or ##pass#through
Combines copy-out & copy-in

to copy directory tree
from one place to another

Copy-out
creates an archive

Uncompressed
find"./stuff"|"cpio"#o">"stuff.cpio

Compressed
find"./stuff"|"cpio"#o"|"gzip">

stuff.cpio

49

50

51
Thursday, September 13, 12

Copy-in
extracts data from an archive

From uncompressed
cpio"#i"<"stuff.cpio

From compressed
gunzip"#c"stuff.cpio.gz"|"cpio"#i

dd

Low-level copying & archiving

(Think “disk duplication”)

dd"if=source"of=target

dd"if=/dev/sda3"of=/tmp/data.iso

52

53

54
Thursday, September 13, 12

Good way to create exact backup
of an entire partition

Not so good
as a general backup tool
✓ Backs up entire partition

including empty space
✓ Cannot restore individual files

unless you can mount target

Create empty file
of a particular size

dd"if=/dev/zero"of=empty.img"
bs=1024"count=720

bs = block size

count = number of blocks

Managing Links

55

56

57
Thursday, September 13, 12

ln"options'source'link
Create a link

Link
Gives a file multiple identities,

like shortcuts in Windows
& aliases in Mac OS X

2 kinds of links
✓ hard links

✓ soft (symbolic) links

Hard links
✓ 2 files that point to the same inode

✓ Both are valid
✓ To delete the file,

you must delete all hard links
✓ Cannot point across filesystems

Soft links
✓ Soft link points to original file

✓ If you delete source,
link target is broken;

if you delete link target,
original source still exists

✓ Can point across filesystems

58

59

60
Thursday, September 13, 12

ln"foo"bar

Create hard link

ln"#s"foo"bar

ln"##symbolic"foo"bar

Create soft link

ln"#f

ln"##force

Remove existing links or files
that have the target link name

ln"#i

ln"##interactive

Remove existing links or files
that have the target link name,

but ask first

ln"#d
ln"#F

ln"##directory

Attempts to create hard links
to directories

Often doesn’t work

61

62

63
Thursday, September 13, 12

To see what a link points to,
use ls"#l

$"ls"#l"link
link"#>"original

Directory
Commands

mkdir

rmdir

64

65

66
Thursday, September 13, 12

mkdir"options'directory
Create directory

mkdir"#m"mode

mkdir"##mode=mode

New directory
has specified permissions mode

(Octal number)

mkdir"#p"/path/to/directory

mkdir"##parents"/path/to/directory

Creates necessary parent directories

$"mkdir"/tmp/foo/bar
No"such"file"or"directory
$"mkdir"#p"/tmp/foo/bar
$"ls"/tmp
foo
$"ls"/tmp/foo
bar

67

68

69
Thursday, September 13, 12

rmdir"options'directory
Deletes empty directory

rmdir"##ignore#fail#on#non#empty

If directory is not empty,
don’t show error message

rmdir"#p"foo/bar

rmdir"##parents"foo/bar

Delete entire directory tree
(if all are empty)

File
Ownership

70

71

72
Thursday, September 13, 12

ls"#l

chown

chgrp

Each file has an owner & group
Each group contains users

3 tiers of permissions
✓ Owner
✓ Group

✓ All other users

Assessing
File Ownership

73

74

75
Thursday, September 13, 12

ls"#l

Show ownership

$$ls$*l
*rw*r**r**1scott$staff$426Nov12$$2009$foo.txt
drwxr*xr*x7scott$staff$238$Apr$$1$16:52$Music

Shows owner, group, & permisions
If you delete a user account,

you’ll see a number
instead of a name

Changing
a File’s Owner

76

77

78
Thursday, September 13, 12

chown"options'newowner:newgroup'file
Change owner (& group)

Can only be used by root!

chown"scott"foo

Change owner

chown"scott:websanity"bar

Change owner & group

chown":websanity"baz

Change group

chown"#R

chown"##recursive

Recursively changes ownership
through an entire directory tree

79

80

81
Thursday, September 13, 12

Changing
a File’s Group

chgrp"options'newgroup'file
Change group for file

Can be used by non-root users!

chgrp"#R

chgrp"##recursive

Recursively changes
group ownership

through an entire directory tree

82

83

84
Thursday, September 13, 12

Controlling
Access

Understanding
Permissions

$$ls$*l
*rwxr*xr*x1rsgranne$staff$426Nov12$2009$foo

#rwxr#xr#x

1 File type code
2-4 Owner’s permissions
5-7 Group’s permissions
8-10 World’s permissions

85

86

87
Thursday, September 13, 12

File type code
#"File
d"Directory
l"Soft link
p"Named pipe (lets 2 Linux programs
 communicate with each other)
s"Socket (Like named pipe, but allows
 network & bidirectional links)
b"Block device
c"Character device

Permissions
r"Read
w"Write (edit, delete, manipulate)
x"Execute files
""Search/list directories
#"Not applicable

r = 4
w = 2
x = 1

777"rwxrwxrwx
755"rwxr#xr#x
750"rwxr#x###
700"rwx######
666"rw#rw#rw#
664"rw#rw#r##
660"rw#rw####
644"rw#r##r##
640"rw#r#####
600"rw#######
400"r########

88

89

90
Thursday, September 13, 12

Soft links always have 777
(just the link, not the file)

Root can read or write to,
& can change permissions on,

every file

Special permission bits

SUID
SGID

Sticky bit

SUID (Set user ID)
Run program with permissions

of file owner
not the user running the program

Indicated by s
in owner’s execute bit position

rwsr#xr#x

91

92

93
Thursday, September 13, 12

SGID (Set group ID)
Run program with permissions

of file’s group owner
On a directory,

new files & subdirectories
created in that directory

will inherit group’s ownership
not the user's current group

Indicated by s
in group’s execute bit position

rwxr#sr#x

Sticky bit
Protects files from being deleted
by those who don’t own the files

On a directory,
files inside can only be deleted

by their owners,
the directory’s owner, or root

Indicated by t
in world’s execute bit position

rwxr#xr#t

Changing
a File’s Mode

94

95

96
Thursday, September 13, 12

chmod

Change file’s permissions (mode)

Specify mode 2 ways

Octal
Symbolic

Octal

chmod"755"file
rwxr#xr#x

chmod"644"file
rw#r##r##

97

98

99
Thursday, September 13, 12

If 4 digits,
1st interpreted as special permissions

4 SUID
2 SGID

1 Sticky bit

6 = SUID + SGID
3 = SGID + Sticky bit

Symbolic
u Owner
g Group
o World
a All

+ Add
Remove
= Equal to

r"Read
w"Write
x"Execute
X"Execute if directory or already
""executable
s"SUID or SGID
t"Sticky bit
u"Existing owner’s permissions
g"Existing group’s permissions
o"Existing world permissions

100

101

102
Thursday, September 13, 12

chmod"a+x"foo

rw#r##r##"→"rwxr#xr#x

chmod"ug=rw"bar

r########"→"rw#rw####

chmod"o#rwx"baz

rwxrwxr#x"→"rwxrwx###

chmod"g=u"qux

rw#r##r##"→"rw#rw#r##

chmod"g#w,o#rw"corge

rw#rw#rw#"→"rw#r#####

chmod"#R

chmod"##recursive

Change permissions on all files
in a directory tree

Setting
the Default

Mode & Group

103

104

105
Thursday, September 13, 12

New files
have default ownership

& permissions
Default owner is

user who created file
Default group is

user’s current group
Default permissions

set by umask

umask

Shows current umask in octal

umask"#S

Shows current umask symbolically

$"umask
0022
$"umask"#S
u=rwx,g=rx,o=rx

Any bit set in the umask
is removed from the final permission

It’s not just simple subtraction
(as you’ll see)

If a bit isn’t set & is 0,
the umask bit doesn’t affect it

106

107

108
Thursday, September 13, 12

A umask of 7 sets
1 bit for user (4)

1 bit for group (2)
1 bit for world (1)

Ordinary file has permissions set to
rw# (110)

""111

#"110

""000

3rd column is 0
because umask

doesn’t touch 0s
←

umask Created
Files

Created
Directories

000 666"rw#rw#rw# 777"rwxrwxrwx

002 664"rw#rw#r## 775"rwxrwxr#x

022 644"rw#r##r## 755"rwxr#xr#x

027 640"rw#r##### 750"rwxr#x###

077 600"rw####### 700"rwx######

277 400"r######## 500"r#x######

Admins set umask default
at /etc/profile

Usually set to 002 or 022

However, users can override

109

110

111
Thursday, September 13, 12

Changing
File Attributes

chattr

Change file attributes

chattr"+attribute"file
Add attribute

chattr"#attribute"file
Remove attribute

112

113

114
Thursday, September 13, 12

a"Disable write except for append
c"Automatically compress data written
""& uncompress data when read
i"Immutable: can’t be deleted, renamed,
""or linked to
j"Journal all data written to file
s"Secure deletion by zeroing data blocks
t"Disable tail-merging, so small pieces
""of files aren’t merged with other files
""to save disk space
A"Don’t update access time stamp

Disk Quotas

Disk quotas
Limits enforced by the OS

on how many files
or how much disk space

a user may consume

115

116

117
Thursday, September 13, 12

Enabling
Quota Support

For quotas,
need kernel support
& user-space utilities

1-2.4.x kernels
have quota v1 support

2.6.x-now kernels
use quota v2 system

Modify /etc/fstab for quotas
by adding mount options

usrquota

User quotas

grpquota

Group quotas

/dev/hdc5"/home"ext3"usrquota,grpquota"1"1

118

119

120
Thursday, September 13, 12

May need to configure
SysV startup scripts

to run when OS boots

Typically something like
chkconfig"quota"on;

Once installed & configured,
reboot

or use modprobe
to load the kernel module

& then remount with
mount"#o"remount"/mountpoint

Setting Quotas
for Users

121

122

123
Thursday, September 13, 12

edquota

Sets quotas
using vi to edit /etc/quotatab

$$edquota$alice
Quotasforuser$alice:
/dev/hda2:$blocks$in$use:$3209,$limits$(soft$=$5000,$hard$=$6500
$$$$$$$$$$$inodesinuse:$403,$limits$(soft$=$1000,$hard$=$1500)

Hard limit
Maximum number allowed

Soft limit
Can be temporarily exceeded,

with warnings;
if exceeded past grace period,

treated like a hard limit

edquota"#t

Set grace period for soft limits

Grace periods set
on a per-filesystem basis

instead of per-user

124

125

126
Thursday, September 13, 12

quotacheck

Verifies & updates quota info
Usually run as a startup script

or via cron job

repquota"/dev/hda2

Summarizes quota info
for filesystem

requota"#a

Summarize quota info
on all filesystems

Locating
Files

127

128

129
Thursday, September 13, 12

The FHS

40 years of UNIX history
means there are historical reasons

things are where they are

Even if they don’t always
make sense!

FSSTND
Filesystem Standard
1st released in 1994

Standardized contents
of /bin & /usr/bin

Specified no executables in /etc

Removed changeable files from /usr
so it could be mounted read-only

130

131

132
Thursday, September 13, 12

FSSTND unfortunately was limited

FHS
Filesystem Hierarchy Standard

Initial release in 1994
Latest release in 2004

Distinctions
✓ Shareable & unshareable files

✓ Static & variable files

FHS tries to isolate directories
between these distinctions,
but some are mixed (/var)

Shareable files
May be shared between computers,

like user data & programs,
often via NFS

Unshareable files
System-specific config files

that are not shared between computers

133

134

135
Thursday, September 13, 12

Static files
Don’t normally change

except through direct intervention
by sysadmin;

e.g., programs

Variable files
May be changed

by users, scripts, servers, etc.

Shareable Unshareable

Static

Variable

/usr
/opt

/etc
/boot

/home
/var/mail

/var/run
/var/lock

Common directories

136

137

138
Thursday, September 13, 12

/

root
All other directories branch off

/bin

Critical executable files
available in single user mode

for all users
(ls, cp, mount)

/boot

Boot files
(kernels, initrd, etc.)

/dev

Since hardware devices are files,
you need a place for device files

Hardware interfaces
Actually a virtual filesystem

created on the fly

/etc

System-wide config files

/etc/opt

Config files for /opt

/etc/X11

Config files for X Window System

139

140

141
Thursday, September 13, 12

/home

Users’ data & personal settings

/lib

Program libraries for /bin & /sbin

/lib/modules

Kernel modules

/media

Optional part of FHS
Like /mnt

Often default mount points
for common removable disks

/mnt

Mount removable-media devices
(/mnt/cdrom & /mnt/floppy)

/opt

Optional software
& ready-made packages,

like commercial apps or games
(/opt/foo & /opt/bar)

/proc

Virtual filesystem created dynamically
to provide access to hardware info,

kernel & process statuses

142

143

144
Thursday, September 13, 12

/root

Home for root

/sbin

Programs run only by root
(e.g., fdisk & e2fsck)

/srv

Site-specific data served
by the system

/tmp

Temporary files
Cleaned out at boot

/usr

Most Linux multi-user programs

/usr/bin

Non-essential programs
not needed in single-user mode

/usr/lib

Libraries for programs
in /usr/bin & /usr/sbin

/usr/local

Subdirectories mirroring organization
of /usr

(/usr/local/bin & /usr/local/lib)

Programs installed by sysadmin
Safe from automatic system upgrades

145

146

147
Thursday, September 13, 12

/usr/sbin

Non-essential system programs

/usr/src

Source code;
e.g., kernel source code

/usr/X11R6

X Window System files
Subdirectories similar to /usr

(/usr/X11R6/bin & /usr/X11R6/lib)

/var

Transient, variable files
(logs, print spools, mail, etc.)

/var/cache

Application cache data

/var/lib

State information
modified by programs as they run

/var/lock

Lock files
keeping track of resources

currently in use

/var/log

Log files

/var/mail

Mailboxes

148

149

150
Thursday, September 13, 12

/var/run

Info about running system
since last boot

(currently logged-in users
& running daemons)

/var/spool

Spool for tasks waiting to be processed
(print queues & unread mail)

/var/tmp

Temp files preserved between reboots

Tools for
Locating Files

find
locate

whereis
which
type

151

152

153
Thursday, September 13, 12

find

locate

Find files
based on database

usually created by cron job

May not find recent files
or find deleted files

Very fast results, though

whereis

Search for files
in restricted set of locations

Quick way to find programs
& related files

(documentation & configs)

154

155

156
Thursday, September 13, 12

which

Search your path
for command

& lists complete path
to first match

which"#a

Return all matches,
not just first

type

Tells you how command
will be interpreted

(as built-in, external, alias, etc.)

$"type"ls
ls"is"aliased"to"`/bin/ls"#FG'

$"type"cat
cat"is"/bin/cat

$"type"cd
cd"is"a"shell"builtin

157

158

159
Thursday, September 13, 12

Review

Thank you!

Email: scott@granneman.com
Web: www.granneman.com

Publications: www.granneman.com/pubs
Blog: ChainSawOnATireSwing.com

Twitter: scottgranneman

© 2012 R. Scott Granneman
Last updated 20120906

You are free to use this work, with certain restrictions.
For full licensing information, please see the last slide/page.

R. Scott Granneman
scott@granneman.com
www.granneman.com

1 Command Line Tools
LPIC-1 Study Group

160

161

162
Thursday, September 13, 12

Licensing of this work
This work is licensed under the Creative Commons Attribution-
ShareAlike License.

To view a copy of this license, visit
 http://creativecommons.org/licenses/by-sa/1.0
or send a letter to Creative Commons, 559 Nathan Abbott Way,
Stanford, California 94305, USA.

In addition to the rights and restrictions common to all Creative
Commons licenses, the Attribution-ShareAlike License features the
following key conditions:

Attribution. The licensor permits others to copy, distribute, display, and
perform the work. In return, licensees must give the original author
credit.

Share Alike. The licensor permits others to distribute derivative works
under a license identical to the one that governs the licensor’s work.

Questions? Email scott@granneman.com

163

Thursday, September 13, 12

