LPIC-1 Study Group 4 Managing Files

R. Scott Granneman scott@granneman.com www.granneman.com

© 2012 R. Scott Granneman Last updated 20120906 You are free to use this work, with certain restrictions. For full licensing information, please see the last slide/page. This presentation is based on Roderick W. Smith's LPIC-1: Linux Professional Institute Certification Study Guide, 2nd edition

That said, there are many additions, subtractions, & changes

Introduction

Managing Files

Everything is a file Everything Gotta know how to create, delete, move, rename, archive, & manipulate files

File Naming $\delta \mathbf{x}$ Wildcard Expansion Rules

Safest to stick to letters, numbers, & these symbols:

Avoid spaces

Never use * ? / \ "

255 character filenames

dot files are hidden

. current directory

parent directory

home directory

Case sensitivity

Foo.txt is not foo.txt is not FOO.txt

Wildcards stand for other characters

? * []

File globbing Wildcard expansion in commands

? Single character

f??k matches flak, folk, fork, funk

*

Any character or characters, including none

f*k

matches folk, flack, flank, firetruck

[] Set of characters

fl[ao]ck matches flack & flock

f[a-z]ck matches fack, feck, fock, & that's it 🕮

\$ ls f??k is the same as \$ ls flak folk fork funk

File Commands

ls cp mv rm touch

ls options files List files

ls List files in current directory

ls -a ls --all Display all files, including dot files

ls --color Colorize listing

ls -d ls --directory List only directory names

ls -1 Long listing, including permissions, owner, group, size, & creation date

ls -F ls --file-type Indicator code after file names

/ Directory @ Symbolic (soft) link = Socket | Pipe

ls -R ls --recursive Display directory contents recursively

cp options source destination Copy files

cp foo bar Change foo to bar

cp foo bar/ Keep foo as the name

cp foo bar/foobar Change foo to foobar

cp ../bar . Copy bar to current directory

cp -i cp -interactive Ask before overwriting

cp -p cp -preserve <u>Preserve ownership & permissions</u>

cp - R (or - r)cp --recursive Copy directory & all contents cp -a cp --archive **Recursive AND preserve** ownership & links

cp -u cp --update Copy only newer or non-existent files

Same options as cp, except for --preserve, --recursive, & --archive

rm options files Remove (delete) files

No trash can, no restore

Same options as cp, except for --preserve, --update, & --archive

rm -rf Only way to delete directories with files in them Very dangerous!

touch *options files* Modify time stamps

3 time stamps for every file

Creation time Last modification time Last access time

touch foo Set modification & access times to current

If foo doesn't exist, create it

touch -a touch --time=atime Change access time

touch -m touch --time=mtime Change modification time

touch -t MMDDhhmm[[CC]YY][.ss] MM month DD day hh hour (24-hour clock) mm minute YY year (12) **CCYY** year (2012) ss second

touch -r reffile touch --reference=reffile Replication reffiles's time stamp

File Archiving

Archiving collects files into a single file

Archiving ≠ compression

tar cpio dd

tar "tape archiver" Don't need tape! Archive files into a *tarball*

tar cvf foo.tar foo/ tar --create --verbose --file

tar zcvf foo.tar.gz foo/
tar --gzip --create --verbose --file

tar W tar --verify Verify archive after writing it

tar zxvf foo.tar.gz
tar --gunzip --extract --verbose --file

tar t tar -list List archive's contents

tar A tar --concatenate Append tar files to an archive tar r tar --append Appends non-tar files to an archive tar u tar --update Append files that are newer than those in an archive

tar d tar --diff tar --compare Compare archive to files on disk

tar p

tar --same-permissions Preserves permissions

tar --exclude Exclude file from archive

tar X file tar --exclude-from file Exclude files listed in file from archive

cpio "Copy In, Copy Out"

Originally for backup to tape

3 modes Copy-out cpio -o or --create Create archive & copy files into it <u>Copy-in</u> cpio -i or --extract Extract data from existing archive Copy-pass cpio -p or --pass-through Combines copy-out & copy-in to copy directory tree from one place to another

Copy-out creates an archive

Uncompressed find ./stuff | cpio -o > stuff.cpio

Compressed find ./stuff | cpio -o | gzip > stuff.cpio

Copy-in extracts data from an archive

From uncompressed cpio -i < stuff.cpio</pre>

From compressed gunzip -c stuff.cpio.gz | cpio -i

dd Low-level copying & archiving

(Think "disk duplication")

dd if=source of=target dd if=/dev/sda3 of=/tmp/data.iso

Good way to create exact backup of an entire partition

Not so good as a general backup tool

- ✓ Backs up entire partition including empty space
- ✓ Cannot restore individual files unless you can mount target

Create empty file of a particular size

dd if=/dev/zero of=empty.img bs=1024 count=720 bs = block size count = number of blocks

Managing Links

In options source link Create a link

Link

Gives a file multiple identities, like *shortcuts* in Windows & *aliases* in Mac OS X

Hard links \checkmark 2 files that point to the same inode ✓ Both are valid \checkmark To delete the file, you must delete all hard links ✓ Cannot point across filesystems Soft links ✓ Soft link points to original file ✓ If you delete source, link target is broken; if you delete link target, original source still exists ' Can point across filesystems

ln foo bar Create hard link

ln -s foo bar ln --symbolic foo bar Create soft link

ln -f ln --force Remove existing links or files that have the target link name

ln -i ln --interactive Remove existing links or files that have the target link name, but ask first

ln -d ln -F ln --directory Attempts to create hard links to directories Often_doesn't work

To see what a link points to, use ls -l

\$ ls -1 link link -> original

Directory Commands

mkdir

rmdir

mkdir options directory Create directory

mkdir -m mode mkdir --mode=mode New directory has specified permissions mode (Octal number) mkdir -p /path/to/directory
mkdir --parents /path/to/directory
Creates necessary parent directories

```
$ mkdir /tmp/foo/bar
No such file or directory
$ mkdir -p /tmp/foo/bar
$ ls /tmp
foo
$ ls /tmp/foo
bar
```

rmdir options directory Deletes empty directory

rmdir --ignore-fail-on-non-empty
 If directory is not empty,
 don't show error message

rmdir -p foo/bar rmdir --parents foo/bar Delete entire directory tree (if all are empty)

File Ownership

ls -l chown chgrp

Each file has an owner & group Each group contains users

3 tiers of permissions ✓ Owner ✓ Group ✓ All other users

Assessing File Ownership

ls -l Show ownership

\$ ls -1
-rw-r--r- 1 scott staff 426 Nov 12 2009 foo.txt
drwxr-xr-x 7 scott staff 238 Apr 1 16:52 Music

Shows owner, group, & permisions If you delete a user account, you'll see a number instead of a name

Changing a File's Owner

chown options newowner:newgroup file Change owner (& group)

Can only be used by root!

chown scott foo Change owner

chown scott:websanity bar Change owner & group

chown :websanity baz
 Change group

chown -R chown --recursive Recursively changes ownership through an entire directory tree

Changing a File's Group

chgrp options newgroup file Change group for file

Can be used by non-root users!

chgrp -R chgrp --recursive Recursively changes group ownership through an entire directory tree

Controlling Access

Understanding Permissions

\$ ls -1

-rwxr-xr-x 1 rsgranne staff 426 Nov 12 2009 foo

-rwxr-xr-x

1 File type code 2-4 Owner's permissions 5-7 Group's permissions 8-10 World's permissions

File type code

- File
- d Directory
- 1 Soft link
- p Named pipe (lets 2 Linux programs communicate with each other)
- s Socket (Like named pipe, but allows network & bidirectional links)
 b Block device
- c Character device

Permissions

- r Read
- w Write (edit, delete, manipulate)
- x Execute files
 Search/list directories
- Not applicable

$$r = 4$$

w = 2
x = 1

777 rwxrwxrwx 755 rwxr-xr-x 750 rwxr-x---700 rwx-----666 rw-rw-rw-664 rw-rw-r--660 rw-rw----644 rw-r--r--640 rw-r----600 rw-----400 r-----

Soft links always have 777 (just the link, not the file)

Root can read or write to, & can change permissions on, every file

Special permission bits

SUID SGID Sticky bit

SUID (Set user ID) Run program with permissions of file owner not the user running the program

Indicated by s in owner's execute bit position rwsr-xr-x

SGID (Set group ID) Run program with permissions of file's group owner On a directory, new files & subdirectories created in that directory will inherit group's ownership not the user's current group Indicated by s in group's execute bit position rwxr-sr-x

Sticky bit

Protects files from being deleted by those who don't own the files On a directory, files inside can only be deleted by their owners, the directory's owner, or root Indicated by t in world's execute bit position rwxr-xr-t

Changing a File's Mode

chmod Change file's permissions (mode)

Specify mode 2 ways

Octal Symbolic

Octal

chmod 755 file rwxr-xr-x chmod 644 file rw-r--r--

If 4 digits, 1st interpreted as special permissions

4 SUID 2 SGID 1 Sticky bit

6 = SUID + SGID 3 = SGID + Sticky bit

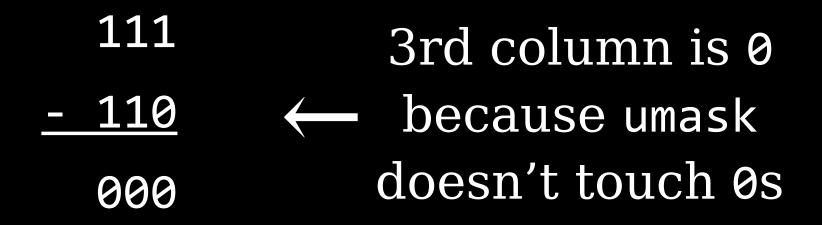
Symbolic u Owner g Group o World a All + Add - Remove = Equal to

- r Read
- w Write
- x Execute
- X Execute if directory or already executable
- s SUID or SGID
- t Sticky bit
- u Existing owner's permissions
- g Existing group's permissions
- o Existing world permissions

chmod a+x foo $rw-r-r-- \rightarrow rwxr-xr-x$ chmod ug=rw bar $r_{----} \rightarrow r_{W-}r_{W--}$ chmod o-rwx baz $rwxrwxr-x \rightarrow rwxrwx--$ chmod g=u qux $rw-r-r- \rightarrow rw-rw-r$ chmod g-w,o-rw corge $rw-rw-rw \rightarrow rw-r--$

chmod -R chmod --recursive Change permissions on all files in a directory tree

Setting the Default Mode & Group


New files have default ownership & permissions Default owner is user who created file Default group is user's current group Default permissions set by umask

umask Shows current umask in octal

umask -S Shows current umask symbolically

\$ umask 0022 \$ umask -S u=rwx,g=rx,o=rx Any bit set in the umask is *removed* from the final permission It's not just simple subtraction (as you'll see)

If a bit isn't set & is 0, the umask bit doesn't affect it A umask of 7 sets 1 bit for user (4) 1 bit for group (2) 1 bit for world (1) Ordinary file has permissions set to rw- (110)

umask	Created Files	Created Directories
000	666 rw-rw-rw-	777 rwxrwxrwx
002	664 rw-rw-r	775 rwxrwxr-x
022	644 rw-rr	755 rwxr-xr-x
027	640 rw-r	750 rwxr-x
077	600 rw	700 rwx
277	400 r	500 r-x

Admins set umask default at /etc/profile

Usually set to 002 or 022

However, users can override

Changing File Attributes

chattr Change file attributes

chattr +*attribute* file Add attribute

chattr -*attribute* file Remove attribute

- a Disable write except for appendc Automatically compress data written& uncompress data when read
- i Immutable: can't be deleted, renamed,
 or linked to
- j Journal all data written to file
- s Secure deletion by zeroing data blocks
- t Disable tail-merging, so small pieces of files aren't merged with other files to save disk space
 A Don't undete peece time stomp

Disk Quotas

Disk quotas Limits enforced by the OS on how many files or how much disk space a user may consume

Enabling Quota Support

For quotas, need kernel support & user-space utilities

1-2.4.x kernels have *quota* v1 support

2.6.x-now kernels use *quota v2 system*

Modify /etc/fstab for quotas by adding mount options

usrquota User quotas

grpquota Group quotas

/dev/hdc5 /home ext3 usrquota,grpquota 1 1

May need to configure SysV startup scripts to run when OS boots

Typically something like chkconfig quota on;

Once installed & configured, reboot or use modprobe to load the kernel module & then remount with mount -o remount /mountpoint

Setting Quotas for Users

edquota Sets quotas using vi to edit /etc/quotatab

\$ edquota alice Quotas for user alice: /dev/hda2: blocks in use: 3209, limits (soft = 5000, hard = 6500 inodes in use: 403, limits (soft = 1000, hard = 1500)

Hard limit Maximum number allowed

Soft limit Can be temporarily exceeded, with warnings; if exceeded past grace period, treated like a hard limit

edquota -t Set grace period for soft limits

Grace periods set on a per-filesystem basis instead of per-user

quotacheck Verifies & updates quota info Usually run as a startup script or via cron job

repquota /dev/hda2 Summarizes quota info for filesystem

requota -a

Summarize quota info on *all* filesystems

Locating Files

The FHS

40 years of UNIX history means there are historical reasons things are where they are

Even if they don't always make sense!

FSSTND *Filesystem Standard* 1st released in 1994

Standardized contents of /bin & /usr/bin

Specified no executables in /etc

Removed changeable files from /usr so it could be mounted read-only

FSSTND unfortunately was limited

FHS

Filesystem Hierarchy Standard Initial release in 1994 Latest release in 2004

✓ Shareable & unshareable files
 ✓ Static & variable files

FHS tries to isolate directories between these distinctions, but some are mixed (/var)

Shareable files

May be shared between computers, like user data & programs, often via NFS

Unshareable files

System-specific config files that are not shared between computers

Static files

Don't normally change except through direct intervention by sysadmin; e.g., programs

Variable files May be changed by users, scripts, servers, etc.

	Shareable	Unshareable
Static	/usr /opt	/etc /boot
Variable	/home /var/mail	/var/run /var/lock

Common directories

root All other directories branch off

/bin

Critical executable files available in single user mode for all users (ls, cp, mount)

/boot Boot files (kernels, initrd, etc.)

/dev

Since hardware devices are files, you need a place for device files Hardware interfaces Actually a virtual filesystem created on the fly

/etc System-wide config files

/etc/opt Config files for /opt

/etc/X11 Config files for X Window System

/home Users' data & personal settings

/lib Program libraries for /bin & /sbin

/lib/modules Kernel modules

/media Optional part of FHS Like /mnt

Often default mount points for common removable disks

/mnt

Mount removable-media devices (/mnt/cdrom & /mnt/floppy)

/opt

Optional software & ready-made packages, like commercial apps or games (/opt/foo & /opt/bar)

/proc

Virtual filesystem created dynamically to provide access to hardware info, kernel & process statuses

/root Home for root

/sbin Programs run only by root (e.g., fdisk & e2fsck)

/srv Site-specific data served by the system

/tmp Temporary files Cleaned out at boot

/usr

Most Linux multi-user programs

/usr/bin Non-essential programs not needed in single-user mode

/usr/lib Libraries for programs in /usr/bin & /usr/sbin

/usr/local

Subdirectories mirroring organization of /usr

(/usr/local/bin & /usr/local/lib)

Programs installed by sysadmin

Safe from automatic system upgrades

/usr/sbin Non-essential system programs

/usr/src Source code; e.g., kernel source code

/usr/X11R6 X Window System files Subdirectories similar to /usr (/usr/X11R6/bin & /usr/X11R6/lib)

/var

Transient, variable files (logs, print spools, mail, etc.)

/var/cache Application cache data

/var/lib State information modified by programs as they run

/var/lock Lock files keeping track of resources currently in use

> /var/log Log files

/var/mail
Mailboxes

/var/run Info about running system since last boot (currently logged-in users & running daemons)

/var/spool Spool for tasks waiting to be processed (print queues & unread mail)

/var/tmp Temp files preserved between reboots

Tools for Locating Files

find locate whereis which type

find

locate Find files based on database usually created by cron job

May not find recent files or find deleted files

Very fast results, though

whereis Search for files in restricted set of locations

Quick way to find programs & related files (documentation & configs)

which Search your path for command & lists complete path to first match

which -a Return all matches, not just first

type Tells you how command will be interpreted (as built-in, external, alias, etc.)

\$ type ls
ls is aliased to `/bin/ls -FG'
\$ type cat
cat is /bin/cat
\$ type cd
cd is a shell builtin

Review

Thank you!

Email: scott@granneman.com Web: www.granneman.com Publications: www.granneman.com/pubs Blog: ChainSawOnATireSwing.com Twitter: scottgranneman

LPIC-1 Study Group 1 Command Line Tools

R. Scott Granneman scott@granneman.com www.granneman.com

© 2012 R. Scott Granneman Last updated 20120906 You are free to use this work, with certain restrictions. For full licensing information, please see the last slide/page.

Licensing of this work

This work is licensed under the Creative Commons Attribution-ShareAlike License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0 or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

In addition to the rights and restrictions common to all Creative Commons licenses, the Attribution-ShareAlike License features the following key conditions:

Attribution. The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original author credit.

Share Alike. The licensor permits others to distribute derivative works under a license identical to the one that governs the licensor's work.

Questions? Email scott@granneman.com