
CSS Visual Formatting Model
Box Generation r Positioning Schemes

© 2014 R. Scott Granneman
Last updated 2020-07-16

You are free to use this work, with certain restrictions.
For full licensing information, please see the last slide/page.

R. Scott Granneman r Jans Carton

3.1

Notes & URLs for this presentation can be found…

» underneath the link to this slide show on

granneman.com

» at files.granneman.com/presentations/webdev/CSS-

Layout.txt

http://files.granneman.com/presentations/webdev/CSS-Layout.txt
http://files.granneman.com/presentations/webdev/CSS-Layout.txt
http://files.granneman.com/presentations/webdev/CSS-Layout.txt
http://files.granneman.com/presentations/webdev/CSS-Layout.txt
http://files.granneman.com/presentations/webdev/CSS-Layout.txt
http://files.granneman.com/presentations/webdev/CSS-Layout.txt

The CSS visual formatting model is an algorithm

used by the rendering engine to:

» Use the DOM & CSSOM to figure out what boxes to

generate

» Use the formatting context to determine the layout of

the boxes

» Use the box model to size the boxes

» Use positioning schemes to adjust placement of the

boxes

display

display is a foundational CSS property that touches all

aspects of the visual formatting model

block

block flow

contents

flex

flex run-in

flow

flow list-item

 block

flow-root

grid

inherit

initial

inline

inline table

inline-block

inline-flex

inline-grid

inline-table

list-item

list-item block

list-item block

 flow

list-item block

 flow-root

list-item flow

list-item flow-

 root

list-item inline

none

ruby

ruby-base

ruby-text

ruby-text-

 container

run-in

table

table-caption

table-cell

table-column

table-column-group

table-footer-group

table-header-group

table-row

table-row-group

unset

These are some of the values for the display property!

The values for display are now categorized into these

data types:

» <display-outside>
» <display-inside>
» <display-listitem>

» <display-internal>
» <display-box>
» <display-legacy>

The legacy way of thinking about display properties — 

which is still very well supported — used single

keywords: block, inline, inline-block

The new way — which is not fully supported by any

browser — may use multiple keywords; e.g., block

flow or block flex

These are categories used with multiple keywords

that can be mixed & matched:

» <display-outside>
» <display-inside>
» <display-listitem>

On the previous slide, display: block flow can be

categorized like this: display: <display-outside>
<display-inside>

These are also categories for display that are not

used with multiple keywords:

» <display-internal>
» <display-box>
» <display-legacy>

display:

multi-keyword
values

– – 70 – – – –

We will mention display in this set of slides as

appropriate

Boxes

Remember: when you’re working with CSS, you are

manipulating boxes

Box Tree

The render tree is a formula describing how the page
will be drawn, including colors, fonts, & boxes

Part of the render tree is the box tree, which

specifies…

» all the boxes that are going to be drawn on the page,

» their order,

» & how they’re nested

Boxes in the render tree are either…

» elements

» pseudo-elements

» anonymous

Most elements generate boxes, even if you don’t think

about them

For example, all the elements in a table generate boxes:

<table>, <thead>, <tbody>, <tr>, <th>, <td>, &
<tfoot>

Pseudo-elements like ::before & ::after also

generate boxes

An anonymous box is not an element or pseudo-

element, but is generated by the rendering engine for

layout purposes

Anonymous boxes are…

» not in the DOM

» not addressable via CSS or JavaScript

Box Model

What are the parts that make up a box?

I buy a vase for a present

In order to protect it, I put
it in a box with packing
peanuts

Finally, I wrap the box in
wrapping paper

Margin

Border

Padding

]
Content

Wrapping

Cardboard Box
Packing

Vase

Margin

Border

Padding

]
Content

Margin

Border

Padding

]
Content

By default, text fills the content area

Content is used to measure box height & width by

default

Not really what most people expect!

Margin

Border

Padding

]
Content

padding-top

padding-right

padding-bottom

padding-left

padding

Sets amount of space on the inside of the box between

content & border

Values
» <length>; e.g., 1em or 30px or 2vh
» <percentage> of the width of the containing block;

e.g., 5%

Padding is transparent, so you cannot change its color

Can set padding…

» on each side individually (e.g., padding-top: 1em)

» or group sides with shorthand (e.g., padding: 1em)

Set padding on each side individually

padding-top: n;

padding-right: n;

padding-bottom: n;

padding-left: n;

Repeating values (e.g., 1em on all sides, or 1em on top &

bottom & 2em on right & left) becomes tedious

Use shorthand to group values

padding: 1em 2em 3em 4em;

1em

3em

2em4empadding: 1em 2em 3em;

1em

3em

2em2em

padding: 1em;

1em

1em

1em1em padding: 1em 2em;

1em

1em

2em2em

Always goes clockwise top, right, bottom, left

Margin

Border

Padding

]
Content

3 properties for borders

» width: using <length> or <percentage> of the width

of the box; e.g., 10px
» style: appearance of border, from a list of values;

e.g., none, solid, or dotted
» color: using <color> data type

Set border width on each side individually

border-top-width: <border-width>;

border-right-width: <border-width>;

border-bottom-width: <border-width>;

border-left-width: <border-width>;

Use border-width shorthand to group values

border-width:

10px 20px 30px 40px;

10px

30px

20px40px
border-width:

10px 20px 30px;

10px

30px

20px20px

border-width: 10px;

10px

10px

10px10px border-width: 10px 20px;

10px

10px

20px20px

Set border style on each side individually

border-top-style: <border-style>;

border-right-style: <border-style>;

border-bottom-style: <border-style>;

border-left-style: <border-style>;

Use border-style shorthand to group values

Border styles

» none: no border shows, & computed border-width is 0

» hidden: same as none, even in table cells with border-collapse:

collapse (unlike none, which shows the border)

» dotted: • • • • • •

» dashed: - - - - - -

» solid: ——————

» double:

» groove: 3D effect going in

» ridge: 3D effect going out

» inset: makes box appear embedded

» outset: 3D effect that makes box appear embossed
}Awful

border-style:

solid dashed dotted none;

border-style:

solid dashed dotted;

border-style: solid;
border-style:

solid dashed;

Set border color on each side individually

border-top-color: <color>;

border-right-color: <color>;

border-bottom-color: <color>;

border-left-color: <color>;

Use border-color shorthand to group values

border-color:

orange aqua chartreuse

white;

border-color:

orange aqua chartreuse;

border-color: orange; border-color: orange aqua;

Or combine it all together…

border-top: <br-width> <br-style> <color>;

border-right: <br-width> <br-style> <color>;

border-bottom: <br-width> <br-style> <color>;

border-left: <br-width> <br-style> <color>;

Or set it for all 4 sides at once:

border: <br-width> <br-style> <color>;

The order of the values doesn’t matter:

border: <br-width> <br-style> <color>;

border: <br-style> <color> <br-width>;

border: <color> <br-style> <br-width>;

What I use

📦 FORMATTING GUIDE

Don’t do this (yes, students have coded this way):

h3 > a {

 border-bottom: dotted;

 border-bottom-width: 1px;

 border-bottom-color: red;

}

Do this:

h3 > a {

 border-bottom: 1px dotted red;

}

border-radius

Rounds the corners of an element’s border

See CSS Effects

Margin

Border

Padding

]
Content

margin-top

margin-right

margin-bottom

margin-left

margin

Sets amount of space on the outside of the box

Values
» <length>; can be positive, negative, or zero, e.g., 1em

or -20px or 0
» <percentage> of the width of the containing block;

e.g., 5%
» auto

Margin is transparent, so you cannot change its color

Set margin on each side individually

margin-top: n;

margin-right: n;

margin-bottom: n;

margin-left: n;

Use shorthand to group values

margin-width:

10px 20px 30px 40px;

10px

30px

20px40px
margin-width:

10px 20px 30px;

10px

30px

20px20px

margin-width: 10px;

10px

10px

10px10px margin-width: 10px 20px;

10px

10px

20px20px

The padding on the <aside>
affects everything, including
the <h2>

The fix: setting margin on the
<h2> to a negative <length>
equal to the padding of its
container

margin: auto

Tells the browser to select a suitable margin to use

Commonly used to center boxes horizontally by equally

distributing available space on the right & left

box-sizing

How dimensions (width & height) are calculated

box-sizing: content-box

Width & height measured based on content, not border,

margin, or padding

Default

box-sizing: content-box
means the box is 300×300, the
size of the gray image that is its
content

box-sizing: border-box

Width & height include content, padding, & border, but

not margin

box-sizing: border-box means
the box is now 300×300 from
border to border, so the 300×300
gray image no longer fits

box-sizing 8 29 5.1 5 10 4

Width & Height

width

Width of the box (determined by box-sizing)

min-width

Minimum width of box so that it cannot be narrower

max-width

Maximun width of box so that it cannot be wider

Values for width, min-width, & max-width:

» auto: browser calculates & selects width (default)
» <length>
» <percentage>
» max-content: as wide as the content, even if it’s too

wide to fit in its container
» min-content: as narrow as the widest content item
» fit-content: as wide as the content or as wide as the

container, whichever is narrower

height

Height of the box (determined by box-sizing)

min-height

Minimum height of box so that it cannot be shorter

max-height

Maximum height of box so that it cannot be taller

Values for height, min-height & max-height:

» auto: browser calculates & selects height (default)
» <length>
» <percentage>

width 4 1 1 1 1 1

min-width 7 1 2.0.2 3.2 1 2.1

max-width 7 1 2.0.2 3.2 1 2.1

height 4 1 1 1 1 1

min-height 7 3 1 3.2 1 2.1

max-height 7 1 1 3.2 1 2.1

width:

max-content – 79 66 11 11 46 46

min-content – 79 66 11 11 46 46

fit-content – 79 3* 11 11 46 46

* Requires -moz- vendor prefix

height:

max-content – 79 66 11 11 46 46

min-content – 79 66 11 11 46 46

fit-content – 79 – 11 11 46 46

overflow

overflow

overflow-x

overflow-y

overflow

On a block-level element, what to do if content overflows

its box

Values:

» visible: Display overflow content (default)

» hidden: Clip content

» scroll: Render horizontal & vertical scroll bars all the

time (don’t use!)

» auto: Show scroll bars only as needed if content overflows

If you’re building apps instead of webpages, overflow:

scroll & overflow: auto can be very useful

overflow: visible
displays overflow
content (default)

overflow: hidden clips
overflow content

overflow: scroll always displays
scrollbars, even if unnecessary

overflow: auto displays scrollbars
only if needed

overflow-x

Same as overflow, but only for left & right

overflow-y

Same as overflow, but only for top & bottom

overflow 4 1 1 1 1 1

overflow-x 5 3.5 3 1 1 1

overflow-y 5 3.5 3 1 1 1

display
& Box Generation

<display-box> keyword values are specific to box

generation

» none
» contents

display: none

Removes element from box tree so no box is generated,

as though it does not exist

Also removes all descendants (i.e., its sub-tree)

display: contents

Removes box from box tree & is replaced by its

contents

display:

none 4 12 1 1 Y 1 Y

contents – 79🐞
37🐞
62

11.1🐞

13.1

11.3🐞

13.5
65🐞 67🐞

🐞 means that the element is hidden from assistive technologies

The Flow

The flow is the interaction of 3 layout behaviors:

» Block layout is vertically adjacent

» Inline layout is horizontally wrapping

» Floated boxes are moved to one side & content that

follows them flows around them

Block layout means that boxes are vertically adjacent

Inline layout means that horizontal boxes wrap to new lines
when they cannot fit

Floated boxes are moved to one side & content that follows
them flows around them

Blocks, inlines, & floats all participate together in a flow

Inline Layout

Inline layout is basic horizontally wrapping behavior:

content runs out of space at end of a line & wraps to the

line below it

Content might be text, but it could also be images,

buttons, or icons

In addition to horizontally wrapping, inline layout

causes content to flow around floated boxes (more on

float soon!)

Inline-Level Boxes

All boxes in inline layout are inline-level boxes

What about nested inline-level boxes that do not have

room to fit on a line; i.e., inline-level children inside

inline-level parents?

Those children are either…

» inline boxes that break across lines

» atomic inline boxes that do not break across lines &

instead move to the next line

Inline box

Contents break across lines; e.g., , <i>, <a>,

Vertical portions of box model (padding, border, &

margin) are ignored by the flow

Inline boxes break across lines,
but are still 1 box

Atomic inline box

Contents does not break across lines; e.g., ,

<video>, & <input>

Vertical portions of box model (padding, border, &

margin) are not ignored by the flow

Note that these words are also
atomic inline blocks — you never see
a word break in the middle of itself

And remember — the rendering engine also creates

anonymous atomic inline boxes around every word in

the viewport

Block Layout

Block layout means that boxes are vertically adjacent

What about nested block-level boxes; e.g., block-level children
stacked inside block-level parents?

Any box in block layout is a block-level item, as are all of these

Margin Collapsing

Margin collapsing: top and bottom margins of blocks

are sometimes combined (collapsed) into a single

margin whose size is the largest of the margins

combined into it

Content

margin-bottom: 30px

margin-top: 20px

Content

Content

margin-bottom: 30px

Content

Margin collapsing

with adjacent siblings

Margin collapsing occurs in 3 cases

» Adjacent siblings

» Parent & first/last child

» Empty blocks

Margin collapsing between
adjacent siblings

20px on bottom of 1 &
20px on top of 2
collapse to 20px, not 40px

The top margin on the first child &
the bottom margin on the last child
collapse outside the content &
overlaps the margin of the parent
box

Between boxes 1 & 3 are 4
margins: bottom of 1, top &
bottom of 2, & top of 3

Even though the 2nd <div>
is empty, margins still exist!

Because 2 has no content, padding, or
border, & no height, the 4 margins
collapse across each other

<div>

 Lorem ipsum

 <p>

 Dolor sit amet

 </p>

 Lorem ipsum

</div>

Anonymous block-level boxes are created around Lorem
ipsum

Why blocks? Because the <p> triggers block layout

Floats

float

clear

float

Element taken out of normal flow & placed along left or

right side of its container, where text & inline elements

will wrap around it

Let’s illustrate that process

3 paragraphs with text & 2 images we want to float left & right

When we float the images, they are 1st taken out of the flow

Now the floated images are moved to the left or the right

Finally text wraps around the floated images, but the paragraph
blocks aren’t affected by the floats

float: left

Element floats on left side of containing block

float: right

Element floats on right side of containing block

Floated elements must have a width, either explicit

(using width) or implicit (as with an image)

Often you’ll want to add

margins around a floated object

What happens when you float a box against another

floated box?

No float!

Float!

float used to be used for layout
purposes, like this image gallery

However, you should not use float for layout of image

galleries (or any sort of faux grid)!

We have better tools now, like flexbox & grid

Why float can be a problem 😣😬

What happens when you float a box against another

floated box, & there’s not enough room?

clear

Specifies that the element should not float or wrap, but

should instead move down below the float

clear: left

Element moves down to clear past left floats

clear: right

Element moves down to clear past right floats

clear: both

Element moves down to clear past left & right floats

(most of the time, just use this one)

float 4 1 1 1 1 1

clear 4 1 1 1 1 1

Why did the Web developer drown?

Why did the Web developer drown?

They didn’t know if they should float: left or float:

right!

Block Formatting
Context*

* Think of it as a Flow Context instead

As you’ve seen, blocks, inlines, & floats participate

(interact with each other) within the overall flow of the

webpage created by <html>

Sometimes you will want sections of your webpage that

have their own flow within them, so that they do not

participate with the elements outside them

In other words, you want those sections to have their

own block formatting (or flow) context

A block formatting context is created either manually

via display: flow-root or automatically

Automatically via…

» <html>

» table cells & captions

» flex & grid items
» display: inline-block

» floated elements
» contain: layout, content, or strict
» overflow with a value other than visible

» multi-column containers
» position: absolute or fixed

A block formatting context does 3 things — all of

which can cause problems:

» Suppresses unwanted parent-child margin collapsing

» Contains internal floats that overflow their containing

boxes

» Excludes external floats that cause adjacent blocks to

display behind a floated box

Suppress Child-Parent
Margin Collapsing

Remember that margin collapsing occurs by default in

block layout between parents & their first & last child

By default, the top margin of the 1st <p>
& the bottom margin of the last <p>
collapse across the top & bottom edges of
the parent <div>

You might think adding padding to the
top & bottom of the <div> would fix it,
but it actually makes it worse

To fix the problem, use display: flow-
root to create a new block formatting
context that suppresses the parent-child
margin collapsing

Contain Internal Floats

Remember, block layout ignores floats

You float a box & text flows around it,

exactly as you would expect

But now, your floated image is
overflowing your <p> because the floated
 is taller than the <p> — not what
you want!

Why? Because floats are ignored by
block boxes inside a flow layout

Adding display: flow-root fixes
the problem by creating a new block
formatting context

Exclude External Floats

What if you want the floated image to sit
next to the paragraph block boxes
instead of on top of them?

display: flow-root fixes the problem,
but what if you add more paragraphs?

This is probably not the layout you want

Instead, you want flexbox (later!)

display & the Flow

<display-outside> keywords

» specify the element’s outer display type; i.e., its role in

the flow

» e.g., block, inline, run-in

<display-inside> keywords

» specify the element’s layout inside its box for its

children

» e.g., flow, flow-root, flex, grid, table

💡PRO TIP

flow is the default if no other <display-inside>

property is set

Practically speaking, you will never explicitly need to

set it

So, for example, on the next slide display: block

could also be written using multiple keywords as

display block flow, but since flow is unnecessary, we

left it out

display: block

Generates block boxes that line up vertically, relative to

parents & siblings

display: inline

Generates inline boxes that are as wide as their content

& break horizontally across lines when they are too

wide to fit their containers

border on all 4 sides, but margin & padding only work

on left & right

Default value for all boxes

Inline boxes break across lines,
but are still 1 box

Change display values to change behavior

<small>: from inline to block

: from list-item to inline

<display-legacy>

The following values for display, all based around

inline layout, are classified as <display-legacy>

» inline-block
» inline-flex
» inline-grid
» inline-table

display: inline-block

display: inline flow-root (<outside> <inside>)

Generates atomic inline box that does not break across

lines

When you set a box to inline flow-root, you make it

behave like an , <video>, or <input>

inline-flex, inline-grid, & inline-table behave

like inline-block, except they have the following

layout modes inside them

» inline-flex: flex layout
» inline-grid: grid layout
» inline-table: table layout

Table Layout

CSS algorithm used to lay out HTML tables

You can use table layout with other elements that are

not tables if you want similar behavior

For example, by using display: table & display:

table-cell you get the advantages of table layout

without the semantics or extra code that <table> or

<td> brings

display
& Table Layout

<display-inside>

display: table (<inside>)

display: block table (<outside> <inside>)

Triggers table layout inside the box:

» Table box stacks (because block)

» Content determines width

<display-internal>

These <display-internal> properties for display

enable you to get elements to act like various parts of a

table

display value HTML equivalent Notes

table-row-group <tbody>

table-header-group <thead>

table-footer-group <tfoot>

table-row <tr>

table-cell <td> or <th> New flow layout

table-column-group <colgroup>

table-column <col>

table-caption <caption> New flow layout

display: table-cell

Causes box to behave like <td> or <th>

» Content determines width

» No margin

Notice that all we provided was display
for table & table-cell, but anonymous
boxes are also created for missing table
elements like <tbody> & <tr>

All table style properties can used with table layout,

like:

» empty-cells
» border-collapse
» border-spacing

(To review, check out the Tables & Lists: Organized

Data slide deck)

Column spanning (via colspan) & row spanning (via

rowspan) is only possible via HTML, not CSS

Flexbox
& Grid

Flexbox & grid are huge subjects that we will covering

in their own presentations

For now, know the following…

display: flex (<inside>)

display: block flex (<outside> <inside>)

Triggers flex layout inside the box:

» Flex box stacks (because block)

» Immediate children become flex items

Flexbox is for laying out elements in a particular
direction along a (sometimes wrapped) line

❶ ❷ ❸ ❹ ❺ ❻ ❼

❽ ❾ ❿

display: grid (<inside>)

display: block grid (<outside> <inside>)

Triggers grid layout inside the box:

» Grid box stacks (because block)

» Immediate children become grid items

Grid assigns objects within a matrix of columns & rows

❶
❹

❷

❸ ❺

❶ ❷ ❸ ❹ ❺ ❻ ❼

❽ ❾ ❿

Flexbox

❶
❹

❷

❸ ❺

Grid

Positioned
Layout

position

Specifies the positioning algorithm for selected

elements

Values:
» static
» relative
» absolute

» fixed
» sticky

position: static

Box is not positioned

💡PRO TIP

static is the default if no other value for position is

set

Practically speaking, you will never explicitly need to

set it

position: relative

Positioned element is offset from where it would

normally be laid out in the flow, but a gap remains

where it was originally

top: <length> or <percentage>

right: <length> or <percentage>

bottom: <length> or <percentage>

left: <length> or <percentage>

When used with position: relative, defines the

distance the element is moved from its normal position

position: absolute

Positioned element is placed in a specified position

relative to its containing block, & the gap closes where

it was originally

Containing block is either…

» Any positioned box (but not position: static

because that’s not positioned!)

» Initial containing block

Viewport

Initial

Containing

Block

Vertical scrolling

Vertical & horizontal scrolling

Resized viewport

top: <length> or <percentage>

right: <length> or <percentage>

bottom: <length> or <percentage>

left: <length> or <percentage>

When used with position: absolute, defines the

distance between the T/R/B/L margin edge of the

positioned element & the T/R/B/L edge of its

containing block

Absolutely positioned elements scroll with their

containing blocks

position: fixed

Positioned element is placed in a specified position

relative to the viewport, & the gap closes where it was

originally

Therefore, the positioned element does not move when

the page is scrolled

Viewport

top: <length> or <percentage>

right: <length> or <percentage>

bottom: <length> or <percentage>

left: <length> or <percentage>

When used with position: fixed, defines the distance

between the T/R/B/L margin edge of the positioned

element & the T/R/B/L edge of the viewport

💡PRO TIP

Warning: when an element with position: fixed is

printed, it appears at that fixed position on every page

position: sticky

Hybrid of relative & fixed positioning

Positioned element treated as position: relative

until it crosses a specified threshold (at top, right,

bottom, or left), at which point it is treated as
position: fixed

Using position: sticky on the heading elements

(e.g., <h1>, <h2>, <h3>) in a document

Using position: sticky on the <dt> elements in a
<dl>

Types of positioned elements based on their

computed position properties:

» Positioned: relative, absolute, fixed, sticky

» Relatively: relative

» Absolutely: absolute or fixed

» Stickily: sticky

Note that absolutely positioned elements are not the

same as position: absolute!

position:

static 4 12 1 1 6.1 1 3?

relative 4 12 1 1 6.1 1 3?

absolute 4 12 1 1 6.1 1 3?

fixed 8 12 2 3.1 8 4 3

sticky – 16‡
32*
59

7.1§
13

8§
13

56† 67‡

* Doesn’t work with any <table> elements † Works with <th> only
‡ Works with <th>; not <tr>/<thead> § Requires -webkit-

Stacking

z-index: <integer>

Specifies the z-order of an element & its descendants

x-index is horizontal

y-index is vertical

z-index is the stacking order

When elements overlap, z-index determines which one

covers the other

Elements with a higher z-index <integer> cover

elements with lower ones

These are not popup windows, just boxes on the page

z-index 4 1 1 Y 1 4

Negative
values

4 3 1 Y 1 4

Writing Mode
& Direction

writing-mode

Specifies two things:

» the orientation of lines of text: vertical or horizontal

» the direction you progress from one line of text to the

next: top-to-bottom, left-to-right, or right-to-left

Values for writing-mode:

» horizontal-tb: horizontal & top-to-bottom, as in

English, Arabic, Hebrew, or Korean
» vertical-rl: vertical & right-to-left, as in Japanese,

Chinese, or traditional Korean
» vertical-lr: vertical & left-to-right, as in Mongolian

direction

Specifies the direction in which readers progress from

one word to the next

Values:

» ltr: left-to-right, as in English, Spanish, or Russian
» rtl: right-to-left, as in Arabic or Hebrew

Latin- & Han-based Mongolian-based

writing-mode:

horizontal-tb;

direction: ltr;

writing-mode:

vertical-lr;

Arabic-based Han-based

writing-mode:

horizontal-tb;

direction: rtl;

writing-mode:

vertical-rl

Latin- & Han-based Mongolian-based

Start edges: top &
left

End edges: bottom
& right

Start edges: top &
left

End edges: bottom
& right

Arabic-based Han-based

Start edges: top &
right

End edges: bottom
& left

Start edges: top &
right

End edges: bottom
& left

Latin- & Han-based Mongolian-based

Block axis: vertical

Inline axis:
horizontal

Block axis:
horizontal

Inline axis: vertical

Arabic-based Han-based

Block axis: vertical

Inline axis:
horizontal

Block axis:
horizontal

Inline axis: vertical

Block start

Block end

In
li

n
e

st
a

rt

In
lin

e en
d

Latin- & Han-based

Block start

Block end

In
li

n
e

st
a

rt

In
lin

e en
d

Arabic-based

Inline start

Inline end

B
lo

ck
 s

ta
rt

B
lo

ck
 en

d

Mongolian-based

Inline start

Inline end

B
lo

ck
 e

n
d

B
lo

ck
 sta

rt

Han-based

For a long time, Web developers have defined layout

based on physical directions that are relative to the

webpage, independent of writing mode: top, bottom,

left, & right

This becomes problematic when you’re switching

between languages that have different writing modes &

directions

The W3C is in providing the capability for developers to

control layout through logical, instead of physical,

directions

That will allow you to change the language on a website

without needing you to completely change your HTML

& CSS

You’re not longer used fixed directions; instead, you’ll

use language-relative directions

All the logical properties as of July 2020:

block-size • inline-size • max-block-size • max-inline-size • min-block-size • min-

inline-size • padding-block • padding-block-end • padding-block-start • padding-inline

• padding-inline-end • padding-inline-start • border-block • border-block-color •

border-block-end • border-block-end-color • border-block-end-style • border-block-

end-width • border-block-start • border-block-start-color • border-block-start-style

• border-block-start-width • border-block-style • border-block-width • border-end-

end-radius • border-end-start-radius • border-inline • border-inline-color • border-

inline-end • border-inline-end-color • border-inline-end-style • border-inline-end-

width • border-inline-start • border-inline-start-color • border-inline-start-style •

border-inline-start-width • border-inline-style • border-inline-width • border-

start-end-radius • border-start-start-radius • margin-block • margin-block-end •

margin-block-start • margin-inline • margin-inline-end • margin-inline-start •

overflow-block • overflow-inline • inset • inset-block • inset-block-end • inset-block-

start • inset-inline • inset-inline-end • inset-inline-start • scroll-padding-block •

scroll-padding-block-end • scroll-padding-block-start • scroll-padding-inline •

scroll-padding-inline-end • scroll-padding-inline-start • scroll-margin-block •

scroll-margin-block-end • scroll-margin-block-start • scroll-margin-inline • scroll-

margin-inline-end • scroll-margin-inline-start

To sum up, these are the things you can control with

logical properties:

» box model: size, padding, border, margin, overflow

» positioning: inset

» scrollsnap: scroll-padding & scroll-margin

There are also many logical values as well!

Box
Alignment

CSS development over the last several years has
increasingly focused on unifying the features &
keywords that relate to the alignment of boxes in the
various CSS box layout models:

» block layout
» multi-column layout
» flex layout
» grid layout

Browsers don’t fully support everything… yet

» block layout: unsupported
» multi-column layout: partially supported
» flex layout: fully supported
» grid layout fully supported

There are significant differences in box alignment
between those 4 box layout models

We will cover those differences as we get to each model

3 types of alignment:

1. Positional specifies the position of aligned boxes
with relation to their container, e.g., start, end,
center

2. Baseline focuses on lining text up along the same
baseline no matter how big the text is, e.g., baseline

3. Distributed focuses on distributing space among
aligned boxes, e.g., space-around, space-between,
stretch

Normally with Baseline you would not show box backgrounds because the focus is on the text

2 axes define the orientation of the layout:

1. inline is horizontal ↔

2. block is vertical ↕

These axes are reversed on pages using languages
like Japanese or Chinese

Multi-Column
Layout

column-count

column-width

columns

column-gap

column-span

column-fill

column-rule-color

column-rule-style

column-rule-width

column-rule

(page-)break-after

(page-)break-before

(page-)break-inside

widows

orphans

column-width

Specifies hint to the browser of the optimal width of the
columns, as actual width may be wider or narrower,
depending upon container width

If the container’s width is narrower than column-width,
you will have 1 column, which is smaller than column-
width

Values for column-width

» <length>: positive values only
» auto: width of the column determined by column-
count & other CSS properties (default)

column-count

Specifies number of columns for content

If column-width is set, column-count specifies the
maximum number of columns (& you should always set
column-width!)

columns

Shorthand for column-width & column-count

You always want to use column-width & column-count

together, so using the columns shorthand makes things

shorter & easier

column-gap

Specifies size of the gap (gutter) between columns

Note: gap is available to use, but it doesn’t make sense to use, as it’s shorthand for column-gap
& row-gap, & row-gap doesn’t work with multi-column layout

column-rule

Shorthand to set width, style, & color of a line drawn

between columns

column-rule-color value is <color>

column-rule-style value is same as <border-style>

earlier; e.g., none, dotted, solid, & so on

column-rule-width value is <length> or thin, medium,

or thick

Container no longer

wide enough to

handle 4 columns at

least 170px wide — 

container is now less

than 4×170px

(column-width) +

3×40px (gap)

Container no longer wide

enough to handle 3 columns at

least 170px wide — container is

now less than 3×170px

(column-width) + 2×40px

(gap)

Container no longer wide enough to

handle 2 columns at least 170px wide 

— container is now less than 2×170px

(column-width) + 40px (gap)

column-span

Allows an element to span across all columns, e.g.,
<h2>

Values:
» all: spans all columns
» none: does not span all columns (default)

column-fill

Specifies whether content is equally divided across
multiple columns

Values:
» auto: Content is not equally divided across columns
» balance: Content is equally divided among columns

(default)

✏ SIDE NOTE

When printing, balance acts different & a new

property can be used

» balance: When printing, only last page is equally
divided

» balance-all: When printing, all pages are equally
divided

column-width 10 12 50 9 9 50 Y

column-count 10 12 52 9 9 50 Y

columns 10 12 52 9 9 50 Y

column-gap 10 12 52 10 10 50 Y

column-rule 10 12 52 9 9 50 Y

column-span 10 12 71 9 9 50 Y

column-fill 10 12 52 9 9 50 Y

Widows & orphans?!

Widow: last line of a paragraph that falls at the
beginning of the following page

I am writing this under an
appreciable mental strain,
since by tonight I shall be no
more. Penniless, and at the
end of my supply of the drug
which alone makes life
endurable, I can bear the
torture no longer; and shall
cast myself from this garret
window into the squalid
street below. Do not think
from my slavery to morphine
that I am a weakling or a

degenerate.

It was in one of the most
open and least frequented
parts of the broad Pacific
that the packet of which I
was supercargo fell a victim
to the German sea-raider.
The great war was then at its
very beginning, and the
ocean forces of the Hun had
not completely sunk to their
later degradation; so that our

👵

Orphan: first line of a paragraph that appears by itself
at the bottom of a page

beneath the scorching sun;
waiting either for some
passing ship, or to be cast
on the shores of some
habitable land. But neither
ship nor land appeared,
and I began to despair in
my solitude upon the
heaving vastnesses of
unbroken blue.

The change happened

whilst I slept. Its details I
shall never know; for my
slumber, though troubled
and dream-infested, was
continuous. When at last I
awaked, it was to discover
myself half sucked into a
slimy expanse of hellish
black mire which extended
about me in monotonous
undulations as far as I
could see, and in which my👦

A mnemonic: “An orphan is alone from the beginning; a
widow is alone at the end”

😢😭😿

widows

Defines minimum lines in a block container that must
be left on top of a new page

Must be a positive <integer>

Defaults to 2

orphans

Set minimum number of lines in a block container that
must be left at the bottom of a page

Must be a positive <integer>

Defaults to 2

widows 10 — 7 7.1 25 4.4

orphans 8 — 7 7.1 25 25

As of July, 2020

The CSS visual formatting model is an algorithm

used by the rendering engine to:

» Use the DOM & CSSOM to figure out what boxes to

generate

» Use the formatting context to determine the layout of

the boxes

» Use the box model to size the boxes

» Use positioning schemes to adjust placement of the

boxes

Thank you!

scott@granneman.com

www.granneman.com

ChainsawOnATireSwing.com

@scottgranneman

jans@websanity.com

websanity.com

CSS Visual Formatting Model
Box Generation r Positioning Schemes

© 2014 R. Scott Granneman
Last updated 2020-07-16

You are free to use this work, with certain restrictions.
For full licensing information, please see the last slide/page.

R. Scott Granneman r Jans Carton

3.1

Changelog

2020-07-16 3.1: Added more detail on float, with

more examples; added Contexts to Boxes; added great

diagrams to show difference between flexbox & grid!;

added margin: auto (!); added new section Direction

& Writing Mode; updated Multi-Column Layout

substatially, & moved widows & orphans there; updated

height, width, & related properties & values

compatibility charts; updated many other things

Changelog

2018-10-12 3.0: (con’t. from ↓) …moved Flexbox & Grid

into their own slide decks!; updated overflow

screenshots; <percentage> with padding & margin

relates to width of containing block; updated position

compatibility table; re-did all float & clear

screenshots & added margins; mentioned border-

radius; added slides on changing <display> to change

behavior

Changelog

2018-10-12 3.0: (con’t. from ↓) …new sections on Block

Layout, Inline Layout, Block Containers, Block Formatting

Context, & display & the Flow; fixed all compatibility

charts; added new, unsupported values to align-content;

moved margin collapsing to Flow; added compatibility

charts for height & width; got rid of Normal & Out-of-

normal flow; Moved Visibility & Opacity to the Decorating

with CSS slide deck; (con’t. ↑)…

Changelog

2018-10-12 3.0: Added <display> section at beginning;

new Boxes section containing new Box Tree, Box Model

(with new illustrations for box model & margin

collapsing, improved text, better notes on box-sizing,

& display: none & display: contents, with

compatibility chart), new Width & Height (better notes

on all properties, with examples), & Overflow (better

examples); new section on The Flow with (con’t. ↑)…

Changelog

2018-08-05 2.9: Better explanation of grid & flexbox in

Layout Modes; gave purpose of flexbox & grid in their

respective sections; added details re: differences

between grid & flexbox; fixed wrong ligatures

2018-05-07 2.8: Added slide re: display: grid;

explained display: flexbox & display: grid better;

added whole new grid section; TODO More grid!

Changelog

2017-11-01 2.7: Changed arrows in Box Model; replaced slide

showing padding; added slide re: inline boxes; explained shorthand

for margin, border, & padding; updated compatibility charts; moved

flexbox stuff to Examples; added slide re: formatting border CSS

2017-06-12 2.6: Removed IE Quirks Mode note re: box-sizing:

border-box; clarified advantages of display: table-cell re:

<table>; added note to use clear: both most of the time; fixed

formatting; changed arrow color in flexbox images; updated slide on

flexbox support in browsers

Changelog

2017-06-11 2.5: Changed to most recent version of theme; fixed

formatting; added note that 3D border-style is bad;

completely re-did padding, border, & margin; hid box-
sizing: padding-box

2016-04-09 2.4: Added more to flexbox support; explained

when overflow is useful for apps; detailed advantages of

display: table; minor updates & fixes in Box Model, Layout

Modes, & Positioning Schemes; emphasized words in

position; moved scheme slide in position

Changelog

2016-01-10 2.3: Added lots to, & made lots of improvements to,

flexbox

2015-06-17 2.2: Re-arranged 1st overflow slide; added values

to 1st display slide; added silly float joke

2015-06-03 2.1: Moved position: fixed after position:

absolute; changed descriptions in position to use singular

instead of plural; added details & examples for position:

sticky; added a lot more on flexbox

Changelog

2015-05-16 2.0: Changed title & subtitle; reordered Layout Modes;

moved Box Model & Layout Modes under Box Generation; more

examples of display: table-cell; better example for display:

inline & display: inline-block; better wording for display:

block, display: inline, & display: inline-block; added display:

flex; added browser support tables; explained visibility better;

added flexbox section (lots!); box-sizing: padding-box is dead

2014-08-05 1.3: Re-took all screenshots for display; added screenshot

for overflow-x & overflow-y; added note on display: inline-block &
inline-table

Changelog

2014-08-04 1.2: Fixed wrong definition of initial containing block &

moved to position: absolute; explained block formatting context

better; moved position: fixed; changed TRBL to T/R/B/L;

scrolling absolutely positioned elements; padding is transparent;

renamed “display” chapter to “Display, Visibility, & Opacity”; added

opacity sub-chapter; added screenshots for collections & sandbox;

added details about margin & padding; added gift-wrapped box

example to box model; showed why negative margins are sometimes

needed

2014-05-14 1.1.1: Fixed errors & added details

TODO

Create illustrations for margin collapsing

Add object-fit

Licensing of this work

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

You are free to:

» Share — copy and redistribute the material in any medium or format

» Adapt — remix, transform, and build upon the material for any purpose, even commercially

Under the following terms:

Attribution. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may

do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. Give credit to:

Scott Granneman • www.granneman.com • scott@granneman.com

Share Alike. If you remix, transform, or build upon the material, you must distribute your contributions under the same

license as the original.

No additional restrictions. You may not apply legal terms or technological measures that legally restrict others from

doing anything the license permits.

Questions? Email scott@granneman.com

